

ZERO BRINE

Work Package 2

Re-designing the supply chain of water and minerals in the multicompany site of the Energy Port and Petrochemical cluster in Botlek area

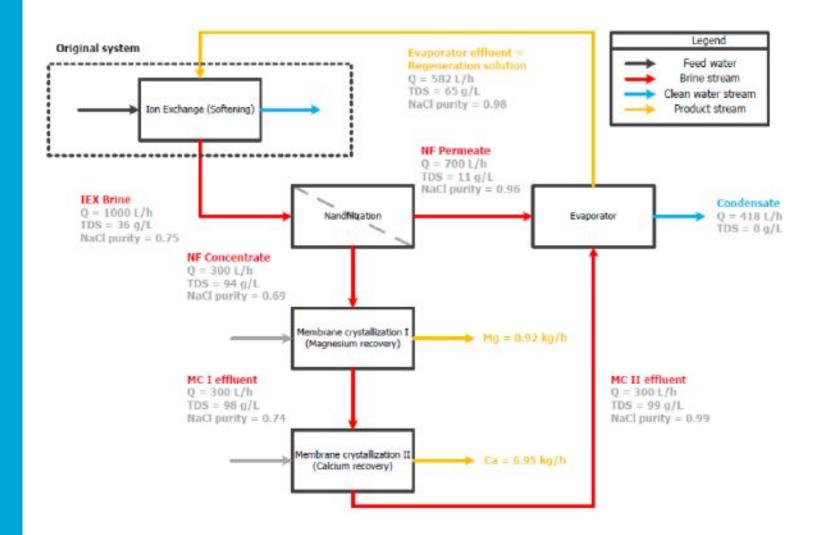
H2020 project, June 2018

Objective

- Demonstrate NF Evaporation concept for the treatment of IX regenerates and their subsequent exploitation for regeneration of IX-resins (internal valorization)
- Demonstrate AIX NF Evaporation EFC concept
- Combine waste heat and wastewater streams in a multicompany site environment with the aim to eliminate brine effluent of the industrial water supplier, to recover high purity magnesium and to recycle streams within the site

Tasks

- 2.1: Preliminary design considerations (TU DELFT, NTUA, LENNTECH, EVIDES, UNIPA) [1-12]
 - 2.1.1: Determination of main brine treatment plant components for EVIDES SITE I [1, ~6]
 - 2.1.2: Determination of main components for EVIDES case II [7, ~6]
- 2.2: Design, manufacturing and installation of the demo plants (NTUA, LENNTECH, TU DELFT, UNIPA, ARVIA) [7-24, ~14]
 - 2.2.1: Final engineering design of the brine treatment systems for EVIDES Site I & II
 - 2.2.2: Manufacturing large demo and pilot system components (**TU DELFT**, LENNTECH, NTUA, UNIPA, ARVIA)
 - 2.2.3: Assembling and installation of the large demo and pilot plants at the site of EVIDES, in the Botlek area (LENNTECH, NTUA, UNIPA, EVIDES)
- 2.3: Operation, optimization and assessment of the large-scale demonstration plants (EVIDES, TU DELFT, NTUA, LENNTECH, ARVIA, UNIPA) [19-42]
- 2.4: Data collection from demo plants at EVIDES Site I and Site II – Input for WP1, WP7, WP8, WP9, WP10 (TU DELFT) [1-42]



Deliverables

- D2.1 : Report on the results from the simulations using PHREEQC [6]
- D2.2 : Report on physicochemical analyses on the wastewater compositions [6]
- D2.3 : Report on the bench-scale tests using equipment from the BEC [10]
- D2.4 : Report explaining the design procedure [18]
- D2.5 : Detailed engineering drawings [18]
- D2.6: Report on the operation and optimization process [42]
- D2.7 : Database of data collected during WP2 demonstration activity [6]

Pilot 1 Botlek

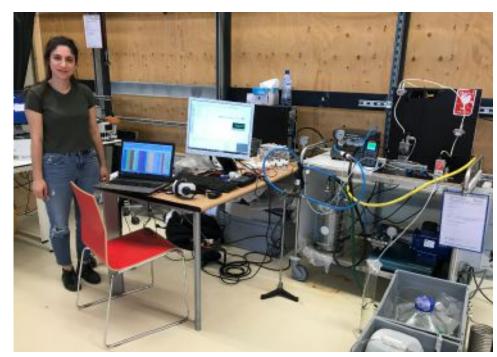
D2.1 PHREEQC

Composition of NF concentrates at 50% and 70% recovery

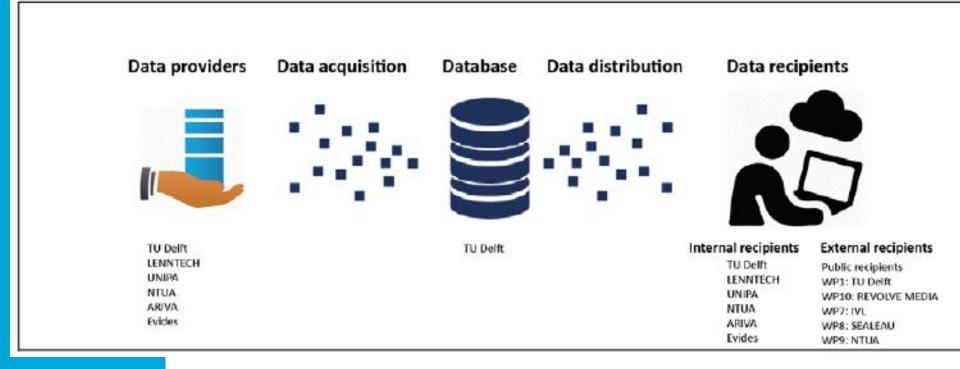
H												
Elem. or ion	Sample 1				Sample 2							
	50% recovery		70% recovery		50% recovery		70% recovery					
	mg.L ⁻¹	mol.L ⁻¹										
As ⁵⁺	0.03	3.6E-7	0.04	5.7E-7								
Ba ²⁺	0.85	6.2E-6	1.36	9.9E-6	0.42	3.0E-3	0.67	4.9E-6				
B ³⁺	0.04	3.5E-6	0.06	5.6E-6								
Ca ²⁺	10 401.63	2.6E-1	16 565.57	4.1E-1	11 987.61	3.0E+2	19 091.38	4.8E-1				
Cr³+	0.02	4.5E-7	0.04	7.2E-7	0.29	5.6E-3	0.47	9.0E-6				
Cu ²⁺	0.06	9.3E-7	0.09	1.5E-6								
Li+	0.12	1.7E-5	0.13	1.9E-5	0.33	4.8E-2	0.35	5.1E-5				
Mg ²⁺	2 122.20	8.7E-2	3 379.80	1.4E-1	1 791.00	7.4E+1	2 852.33	1.2E-1				

....Etc.

Mg and Ca may be separated with great efficiency from spent IEX regenerant, however complete (> 99%) recovery not possible. Esp. part of the Mg will end up as scaling before reaching the crystallization step.


D2.2 Water analysis IEX regenerant

Cations		MW	Concentration	Anions		MW	Concentration
		g/mol	mM.			g/mol	mM
Sodium	Na ⁺	23.0	222.36 ± 201.63	Chloride	Ch	35.5	691.94
Magnesium	Mg ²⁺	24.3	44.81 ± 9.22	Fluoride	F-	19.0	0.00
Potassium	K+	39.1	4.95 ± 1.54	Bromide	Вг	79.9	0.00
Calcium	Ca ²⁺	40.1	163.31 ± 0.79	lodide	l*	126.9	17.52
Iron	Fe ⁵⁺	55.8	0.02 ± 0.02	Nitrite	NO ₂ -	46.0	0.00
Titanium	Ti ²⁺	47.9	0	Nitrate	NO ₃ -	62.0	0.00
Vanadium	V ⁵⁺	50.9	3.18E-6 ± 2.16E-6	Phosphate	PO ₄ 3-	95.0	4.11
Chromium	Cr3+	52.0	9.61E-7 ± 9.85E-7	Sulphate	5Oa2-	96.1	0.00
Lithium	Li+	6.9	1.78E-5 ± 9.36E-7	Silicate	SiO ₄ a-	92.1	31.14
Beryllium	Be ²⁺	9.0	0	Bicarbonate	HCO ₂ .	61.0	
Aluminum	A 3+	27.0	0				
Manganese	Mn ²⁺	54.9	8.42E-8 ± 1.19E-7				
Cobalt	Co2+	58.9	2.51E-7 ± 3.54E-7				
Nickel	NI ²⁺	58.7	1.40E-5 ± 1.48E-5				
Copper	Cu ²⁺	63.5	2.69E-7 ± 3.80E-7				
Z inc	Zn ²⁺	65.4	7.91E-7 ± 1.12E-6				
Strontium	Sr ²⁺	87.6	3.53E-4 ± 8.77E-5				
Molybdenum	Mo4+	95.9	8.36E-8 ± 9.95E-8				
Silver	Ag⁺	107.9	1.16E-8 ±1.59E-8				
Cadmium	Cd ²⁺	112.4	1.56E-9 ± 2.21E-9				
Antimony	Sb ⁵⁺	121.8	5.30E-8 ± 6.80E-8				
Barium	Ba ²⁺	137.3	2.85E-5 ± 3.77E-6				
Thallium	T 3+	208.4	1.25E-9 ± 1.77E-9				
Lead	Pb2+	207.2	1.43E-7 ± 2.02E-7				
Total Dissolved Solids (TDS)			40 456.42	mg/L			


D2.3 Bench scale tests

- Ultra Filtration (Lenntech)
- Membrane Crystallization (UNIPA)
- Evaporation (NTUA)

D2.7 Database: providers, managers and data recipients

Plant One, Botlek

- Brine by IBC bulk containers
- Waste heat: condensate

