

Knowledge for Tomorrow

ZERO BRINE Project Meeting – WP5

June 21th, Athens

M. Moser, D. Xevgenos, M. Micari with contributions of NTUA, UNIPA, TUDELFT, CTM,

5.1 - Refurbishment and minor design modifications (upgrade) of pilot brine treatment systems

Technology	Current Activities	Planned finalization
MED	 Refurbished and fully installed on the Greek BEC Ready for upcoming experiments on the UEST Lab 	M18
EFC	 Ready for shipping to WP4 	M18
Crystallizer	 Lab scale: Multiple Feed – Plug Flow Reactor (MF- PFR), CSTR, CrIEM Pilot unit: MF-PFR for recovery of Mg & Ca Ready for shipping to WP2 	M18

5.1 - Refurbishment and minor design modifications (upgrade) of pilot brine treatment systems

Crystallizer

Subtask 5.2.2: Plans for shared use of BEC equipment

5.3 – Development of technology libraries (software tool) and integration into a common platform

- Java framework by DLR for remote and shared use of models/simulations
- Simulations are defined as workflows which consist of linked modules
- Environment consists of a server and one or more clients
- Simulation code has to be installed on the RCE Server and can be run by all authorized clients
- Configuration of simulations and required input data can be provided by the client and are automatically transferred from the client to the server
- Results are automatically transferred from the server to the client

RCE Client 2

Model	Responsible	Main Features	Status
MED	DLR/Python	 Forward-feed and parallel-cross feed arrangement CAPEX (Module Costing Technique) and OPEX estimation 	10/17
RO	DLR/Python	 Single stage or permeate staging arrangement varying P_{feed} and n_{stages} for a required R (cost min) 	02/18
NF	DLR/Python	 Batch and plug flow reactor Economic estimations based on overall mass balances 	current
Cryst.	DLR/Python	 Hierarchical model: from membrane to plant scale CAPEX and OPEX 	04/18
MD	DLR/Python	-	pending
IEX	DLR/Python	-	pending
EFC	CTM/Matlab	 Data Driven approach: bench scale monitoring results Theoretical energy model: stochastic, thermodynamic Link to energy supply unit (NH₃-H₂0 absorption chiller)-EFC 	current
ED	CTM/Matlab	 Data Driven approach: bench scale monitoring results Theoretical energy modelisation: lumped modeling 	pending
✓ DLR			

Contraction of the second

A CONTRACTOR

First treatment chain: EVIDES Site I

Nanofiltration recovery variation: preliminary results

Nanofiltration recovery variation: preliminary results

LBC_{tot} ~ **5** \$/m³ with R=25%

Current cost of regenerant = 8 \$/m³

Edge case: chain without NF (preliminary results)

- Presence of NaCl is not problematic in the crystallizer
- Lower concentrations of bivalent ions are favorable in the crystallizer (not too high supersaturation)

Feed flow rate variation: preliminary results

--- current regenerant solution cost

Flow rate produced in the Evides Site I?

If 1060 m³/day ~ 45 m³/h:

- LBC ~ 8.7 \$/m³
- without NF ~ 6 /m³

Subtask 5.3 – EFC Model

Temperature profile across the subcooled heat exchanger surface. Tj is the average coolant temperature inside the jacket and Tsol is the average temperature of bulk solution in the crystallizer.

Example of a variation of thermal power delivered in function of operational conditions

- Multiple criteria evaluation and determination of the optimal operating strategy, studying:
 - Energy consumption
 - Operating costs
 - CO₂ eq emissions

• ...

- Driving temperature variation (desorber)
- ✓ Sink temperature variation
- ✓ Variable cooling demand
- Operational constraints: impurity, crystal growth, etc.