

ZERO BRINE

WP7. Evaluation of ZERO BRINE systems sustainability performance

Steve Harris IVL The Swedish Environmental Research Institute

The ZERO BRINE project (www.zerobrine.eu) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730390.

WP7 Evaluation of ZERO BRINE systems sustainability performance

Overall objective

Evaluation of the environmental benefits, the social benefits and the economic feasibility of the innovative ZERO BRINE systems.

Lay foundation for Environmental Technology Verification.

ZERO BRINE WP7 key to enabling and legitimising the upscaling of the technology systems

- Demonstrating the benefits and potential of the system
- Analysis of economic, social and environmental benefits
- Basis for market exploitation and replication

Task	Start (M)	End (M)
7.1 Evaluation of demo activities results	11	47
> 7.1.1 Unified project approach and model LCA and LCSA	11	46
> 7.1.2 Botlek demo evaluation	36	47
> 7.1.3 IQE Spain demo evaluation	36	47
> 7.1.4 Poland and Turkey demo evaluation	30	35
7.2 Economic evaluation of case studies (feasibility study)		47
7.3 Environmental Verification Technology	24	47
Industrial Wastewater Resource Recovery Circular Economy		

The evaluation is made in a Life Cycle perspective

Industrial Wastewater

Resource Recovery

Circular Economy

WP2 EVIDES and ZB Flowcharts

Current system: **Evides Industriewater** ZeroBrine system Lake - - - - - - - - - - - - -------Lake Pump **ZERO BRINE** ـــــ يل Ť DAF ł Pump Water SITE 1 → \mathbf{T} ------DAF Membrane lon Membrane Nanofiltrat Evaporate → crystallizatio → crystallizati exchange Electricity → l→ l → on softening n 1 on 2 r----Water → i Chemicals Ł L_____ ----------Ion exchange Electricity → → Emissions softening r-----_ _ _ _ _ _ _ _ _ _ _ _ _ • > Softened water ewservoir Emissions : ł -----Diesel → Softened water ewservoir L----i Site 2 |Transportat| → Ψ ion ----------NaCl → Chemicals -----► Evapoorato Reverse High purity: Reverse _____ → Demiwater osmosis r (NaHCO3) osmosis salt ------Magnesiu 1 Ψ m _____ Eutetic lon → Nanofiltrati freeze Transportation Reverse TOC → excange l → → → Calcium Ion exchange mixed bed polisher osmosis removal on crystallizati (anionic) Brine → on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , $\mathbf{1}$ → Sulphate wastewater J High purity salt → Sodium Reverse Bicarbonat ----! osmosis e e Demi water reservoir Ł Ion exchange mixed bed polisher

Stages in proposed "Unified Approach for Sustainability Evaluations" in concert with demonstration work

Proactive Life Cycle approach

1. Eco-design principles	 Design for circularity Low toxicity/ energy/ carbon /material use
2. Life Cycle thinking	 Chemicals / reagents – impact? Potential life cycle issues? Early indication of hotspots
3. Identification of data issues	What is the most critical data?What might be hard to get LCI datasets on?
4. Other considerations	 Location – building closer or pipeline? Others? Source Recovery Circular Economy

Data needed for the evaluation

- Define system boundaries for the evaluation: Understanding of WP2-WP4 systems in terms of functionality and process steps
- ENVIRONMENT: Input and output flows to the process steps in the system;
 e.g. data for energy use, chemical use, emissions to air, water and soil
- SOCIAL: Interviews with stakeholder groups to identify hotspot indicators and site specific indicators
- ECONOMIC: Life cycle costing approach, OPEX (DLR simulation platform), CAPEX (WIT + BOS, TYPSA)

Planning milestones

Task /del.	Milestone	Date
7.1	Understand systems Begin collecting data	June 2018
	Meeting to discuss unified approach - in WP7 team (following initial research)	30 September 2018
	Initial bench scale evaluation – initial sustainability input to WP2-WP4	30 December 2018?
	Finalise unified approach - in WP7 team	31 January 2019?
D7.4	Draft initial analysis - individual	1 st April 2019
	Draft report for review	1 st May 2019
	Report on preliminary LCA/LCC results	(M24) 1 st June 2019
7.2	Start set up of economic model (DLR)	Jan 2019
	Industrial Wastewater 🔶 Resource Recovery 🔶 Circular Economy	

Industrial Wastewater

Resource Recovery

Circular Economy

S-LCA framework

Primary data sources, secondary data sources

S-LCA stakeholder groups and impacts

- Hotspots Indicators and
- Site specific Indicators