

degli Studi

di Palermo

Modelling of an innovative membrane crystallizer for the production of Magnesium Hydroxide from waste brine

C. Morgante^{a*}, F. Vassallo^a, G. Battaglia^a, D. La Corte^a, M. Micari^b, A. Cipollina^{a*},

A. Tamburini^{a,c}, G. Micale^a

^a Dipartimento di Ingegneria, Università degli Studi di Palermo (UNIPA)- viale delle Scienze Ed.6, 90128 Palermo, Italy

^b German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany

^c ResourSEAs SrL, viale delle Scienze Ed. 16, 90128 Palermo, Italy

*corresponding authors: carmelo.morgante01@unipa.it andrea.cipollina@unipa.it

- (ii) seawater as the feed [1].

Results and Discussion

Time Integration

Mass balance equations for both tanks to determine concentrations in the two tanks. When a certain Mg²⁺ conversion is reached, the mass balances are modified, considering the Feed & Bleed configuration.

Anionic Exchange Membrane (AEM)

Brine/Alkaline compartment

Batch configuration

magnesium hydroxide from seawater and industrial brines, Membranes (Basel). 10 (2020) 1–14. doi:10.3390/membranes10110303.

References:

[2] F. Vassallo, C. Morgante, G. Battaglia, D. La Corte, M. Micari, A. Cipollina, A. Tamburini, G. Micale, A simulation tool for ion exchange membrane

crystallization of magnesium hydroxide from waste brine, Chem. Eng. Res. Des. 173 (2021) 193–205. doi:10.1016/j.cherd.2021.07.008.

ACKNOWLEDGEMENTS The ZERO BRINE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 730390.

Spatial Integration

Mass balance equations for each Δx in

which both channels are discretized to

calculate the outlet ionic concentrations

and flow rates of the reactor.

